Error Gradient-based Variable-Lp Norm Constraint LMS Algorithm for Sparse System Identification
نویسندگان
چکیده
Sparse adaptive filtering has gained much attention due to its wide applicability in the field of signal processing. Among the main algorithm families, sparse norm constraint adaptive filters develop rapidly in recent years. However, when applied for system identification, most priori work in sparse norm constraint adaptive filtering suffers from the difficulty of adaptability to the sparsity of the systems to be identified. To address this problem, we propose a novel variable p-norm constraint least mean square (LMS) algorithm, which serves as a variant of the conventional LpLMS algorithm established for sparse system identification. The parameter p is iteratively adjusted by the gradient descent method applied to the instantaneous square error. Numerical simulations show that this new approach achieves better performance than the traditional Lp-LMS and LMS algorithms in terms of steady-state error and convergence rate.
منابع مشابه
Variable p norm constrained LMS algorithm based on gradient of root relative deviation.pdf
A new Lp-norm constraint least mean square (Lp-LMS) algorithm with new strategy of varying p is presented, which is applied to system identification in this letter. The parameter p is iteratively adjusted by the gradient method applied to the root relative deviation of the estimated weight vector. Numerical simulations show that this new algorithm achieves lower steady-state error as well as eq...
متن کاملGradient Compared Lp-LMS Algorithms for Sparse System Identification
In this paper, we propose two novel p-norm penalty least mean square (lp-LMS) algorithms as supplements of the conventional lp-LMS algorithm established for sparse adaptive filtering recently. A gradient comparator is employed to selectively apply the zero attractor of p-norm constraint for only those taps that have the same polarity as that of the gradient of the squared instantaneous error, w...
متن کاملGradient optimization p-norm-like constraint LMS algorithm for sparse system estimation
In order to improve the sparsity exploitation performance of norm constraint least mean square (LMS) algorithms, a novel adaptive algorithm is proposed by introducing a variable p-norm-like constraint into the cost function of the LMS algorithm, which exerts a zero attraction to the weight updating iterations. The parameter p of the p-norm-like constraint is adjusted iteratively along the negat...
متن کاملp Norm Constraint Leaky LMS Algorithm for Sparse System Identification
This paper proposes a new leaky least mean square (leaky LMS, LLMS) algorithm in which a norm penalty is introduced to force the solution to be sparse in the application of system identification. The leaky LMS algorithm is derived because the performance ofthe standard LMS algorithm deteriorates when the input is highly correlated. However, both ofthem do not take the sparsity information into ...
متن کاملLeast Mean Square Algorithm with Application to Improved Adaptive Sparse Channel Estimation
Least mean square (LMS) based adaptive algorithms have been attracted much attention since their low computational complexity and robust recovery capability. To exploit the channel sparsity, LMS-based adaptive sparse channel estimation methods, e.g., L1-norm LMS or zero-attracting LMS (sparse LMS or ZA-LMS), reweighted zero attracting LMS (RZA-LMS) and Lp-norm LMS (LP-LMS), have been proposed b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1509.07951 شماره
صفحات -
تاریخ انتشار 2015